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SOUTH CAROLINA DEPARTMENT OF TRANSPORTATION 
OFFICE OF MATERIALS AND RESEARCH 

PAVEMENT DESIGN GUIDE 
June 2008 

I. Introduction 

When construction, maintenance, and rehabilitation costs are considered, the single most 

costly element of a highway system is the pavement structure.  In an effort to reduce this cost, 

the Federal Government and all state highway agencies have sponsored a continuous program 

and research on pavements over the last 80 years. Although much has been learned, the state of 

knowledge on the behavior of paving materials remains incomplete. Variables associated with 

traffic loading, location, and environment make absolutely precise pavement performance 

predictions for new or rehabilitated sections very difficult. 

The lack of perfect predictive capability, however, does not mean that pavement design 

activities are useless. On the contrary, current design procedures almost always provide 

pavements that perform at least as long as the target design period with a high degree of 

reliability. These predictions, combined with sound engineering judgment and knowledge of 

previous pavement performance in an area, is essential for most effectively allocating finite 

paving resources. 

II. Goals of Pavement Design 

The purpose of pavement design activity is to provide the most cost-effective pavement 

structure while optimizing the level of service provided to road users. These goals may 

frequently conflict. For instance, it may be most cost-effective to annually place a low-cost 

surfacing on a given segment of pavement. However, the service disruption required for yearly 

rehabilitation of the pavement would clearly be unacceptable for all but the lowest level traffic 

conditions. Conversely, a more initially expensive pavement design with a longer life, such as 

concrete or “perpetual” asphalt pavement, may ultimately be more cost effective, but funding 

constraints may also make that choice impractical.  Cost alone can never wholly define the 

“best” pavement design. 
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III. New Pavement Design Procedures 

The SCDOT uses the 1972 edition of AASHTO Guidelines for Pavement Design for new 

pavement designs, with some exceptions.  Although AASHTO pavement design guidelines were 

extensively revised in 1986 and 1993, significant practical problems in the revisions have led the 

agency to continue with the earlier procedures. AASHTO has officially adopted a new 

mechanistic-empirical design guide that is completely different from past procedures.  This 

procedure is based on mechanistic principles and uses advances in computer technology to more 

accurately simulate pavement behavior. However, this procedure will require extensive local 

calibration before it will reliably provide superior results when compared to current methods.  It 

is expected that this calibration period will take five to seven years.  This is consistent with the 

calibration of the current procedure, which was conducted from 1964 to 1972. 

A. Pavement Design Procedures for New Flexible Pavements 

Inputs to the design procedure for new flexible pavements are Soil Support Value (SSV), 

Equivalent 18,000 Pound Single Axle Loads in the Critical Lane (ESALs), Regional Factor (R), 

Terminal Serviceability (pt), and Coefficients of Relative Strength for various paving materials 

(ai). 

1. Soil Support Value 

Soil Support Value (SSV) is a term defining the relative subgrade support quality in 

relation to the soils at the AASHO Road Test. Values above 3.0 indicate that the soil has better 

support qualities than the A-6 soils at the Road Test site; less than 3.0 indicates poorer 

characteristics. The procedures typically used by the SCDOT to determine SSV are outlined in 

Appendix A. 

A common source of confusion regarding SSV is that it is based on a single laboratory 

test or field observation.  In fact, the final SSV assigned to a project is ultimately based on the 

subjective judgment of the potential variability of the soils encountered on a given project. For 

instance, in the case of a smaller project such as an intersection improvement constructed at-

grade, the SSV assigned may be closely based on the results of laboratory testing since the soils 
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encountered will likely be very similar to those tested. On the other hand, a large project with 

substantial borrow quantity that extends over many miles may receive a lower SSV than the 

smaller project even if the laboratory test results are similar. The lower value is given because 

the potential for variation is much greater for the larger project and must be accounted for in the 

pavement design. 

2. Traffic 

To use the AASHTO performance prediction equation, mixed vehicle types in the traffic 

stream must be converted into an equivalent number of 18-kip single axle loads.  For trucks, 

some typical factors are shown in Table I. However, the actual ESAL value used for each type 

of truck varies depending on the traffic level. Because the effect of automobiles upon pavement 

is so slight, they are not considered in traffic analysis. 

To simplify the task of dealing with mixed traffic further, Road Groups were developed 

based on the typical mix of traffic on different types of roads. The Traffic Engineering office 

within the SCDOT selects the appropriate Road Group for each project. The Road Groups are 

shown in Table II. For example, assume a four-lane road will average 10,000 vehicles per day in 

both directions over ten years. Of this traffic, 20% (or 2000) of the vehicles are trucks of various 

types corresponding to Road Group “O”. 

The outside right lane is referred to as the “critical lane” in pavement design because it 

carries the greatest percentage of the traffic and, as a result, is more severely damaged and 

reaches failure first. It is the critical lane traffic that is used to design pavement. For roads with 

two lanes it is assumed that 80% of the traffic is using the critical lane.  For roads with three 

lanes in each direction, it is assumed that 65% of the traffic is in the critical lane. For roads with 

four lanes in each direction, it is assumed that 60% of the traffic is the critical lane.  So, for our 

example, it is assumed that 80% of the trucks (or 1600) are utilizing the outside lanes. It is 

further assumed that the traffic is equal in both directions, so the outside lane in each direction 

carries 800 trucks per day. 

Eight hundred trucks per day of Road Group “O” is equivalent to (800 times 0.9027, see 

Table II) 722.2 ESALs per day, or 2,635,884 ESALs over 10 years. If the AASHTO flexible 

pavement design nomograph is used, this corresponds to an input value of 361.1 ESALs per day 

for 20 years. 
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Table I – Typical Equivalent Single Axle Loads for Various Truck Types (from Vehicle 
Classification Studies 1966-1970) 

Vehicle Type 
Equivalent Single Axle 

Loads on Flexible 
Pavement 

Equivalent Single Axle 
Loads on Rigid Pavement 

2 axles, dual tire axle on rear 
(Class 5) 

0.1783 0.1775 

3 axles, 2 dual tire axles on rear 
(Class 6) 

0.6269 1.0152 

2 axles on tractor, 1 dual tire axle 
on trailer (Class 8) 

0.7691 0.7684 

3 axles on tractor, 2 dual tire axles 
on trailer (Class 9) 

1.0914 1.8532 
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Table II - Truck Type Distribution for Various Road Groups (Revised March 5, 1999) 

ROAD 
GROUP 

DISTRIBUTION OF TRUCKS BY TYPE (%) ESALs 
PER 

TRUCK 
(FLEXIBLE) 

ESALs 
PER 

TRUCK 
(RIGID) 

Class 5 Class 6 Class 8 Class 9 All others 

A 94 - - - 6 .1864 .1821 

B 90 5 - 4 1 .2419 .2637 

C 81 5 5 7 2 .2841 .3189 

D 73 6 6 10 5 .3023 .3533 

E 68 6 8 12 6 .3443 .4172 

F 64 6 7 15 8 .3774 .4766 

G 59 8 5 19 10 .4178 .5345 

H 54 6 7 25 9 .4721 .6185 

I 48 7 5 31 8 .5269 .6981 

J 44 8 5 36 7 .5822 .7929 

K 40 7 6 41 7 .6398 .8838 

L 33 7 6 49 6 .7052 .9948 

M 27 7 6 55 5 .7713 1.0971 

N 24 3 6 60 7 .8346 1.2086 

O 21 0 6 66 8 .9027 1.3214 

P 12 3 4 72 9 .9891 1.5227 
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3. Regional Factor 

The Regional Factor (R) is used to account for climatic variability throughout the 

country. The Regional Factor for the AASHO Road Test in Ottawa, Illinois was set at 1.0. A 

value of 1.0 is used for pavement design by the SCDOT. 

4. Present Serviceability Index 

The present serviceability index (PSI) concept was developed during the AASHO Road 

Test. A maximum PSI rating of 5.0 indicates an absolutely smooth, totally perfect pavement. A 

rating of 0.0 indicates total impassability at any speed in a wheeled vehicle.  Intermediate values 

are based on levels of roughness and cracking which have been correlated to ratings given by 

road users. A flexible pavement begins with an initial serviceability of approximately 4.2 and is 

designed to reach a given serviceability level at failure, called terminal serviceability (pt). The 

SCDOT uses a terminal serviceability of 2.5 for high-speed limited-access facilities and 2.0 for 

all other situations. 

5. Coefficients of Relative Strength 

Once all factors have been gathered, the equation used for prediction of the number of 

ESALs required to reach a condition corresponding to pt for a given pavement is: 

log[(4.2 - pt ) /(4.2 -1.5)]
log(ESALs) = 9.36log(SN +1) - 0.20 + 5.190.40 + [1094 /(SN +1) ] 

1
+ log( ) + 0.372(SSV - 3.0) (1)

R 

where SN = Structural Number. Equation 1 is solved iteratively for an SN value that will 

provide an appropriate number of ESALs to failure. Equation 1 may also be solved for pt = 2.0 

or 2.5 by using AASHTO nomographs shown in Appendix C in Figures 1 and 2. 

Once the appropriate SN value is known, the value is converted to an actual pavement 

structure. Structural number is defined as: 

(2) 
n 

SN = � ai · hi 
i=1 
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where ai = coefficient of relative strength for the ith layer and hi = thickness of the ith layer. The 

assigned coefficients of relative strength for South Carolina paving materials are shown in Figure 

3. 

The SCDOT has developed a number of different hot mix asphalt types to be used for 

different conditions. The recommended asphalt types are shown in Table III. 

The AASHTO equations shown above cannot be used blindly.  For instance, a pavement 

could be designed using 36 inches of Earth Type Base (often referred to as “Sand Clay” base) 

covered with a Bituminous Surfacing. This structure might satisfy the design requirement, but 

would not be suitable for a busy road, regardless of the structural number.  Experience and 

judgment are required to create a combination of layers that will perform satisfactorily. Several 

“rule-of-thumb” limitations are typically used for flexible pavement design.  These are: 

1.	 Granular bases (Macadam, Marine Limestone, Recycled PCC, and Cement Stabilized 
Aggregate Base) are limited to a maximum thickness of 10 inches and a minimum of 
6 inches. 

2.	 Cement-Modified Subbase layers are typically 6 or 8 inches thick. 

3.	 If combined AC Surface and AC Intermediate thickness exceeds 400 psy, the excess 
over 400 psy is assigned a coefficient of relative strength equal to 0.34. 

When designing a pavement, the engineer should also be aware of other placement 

limitations related to the specific conditions at a given project.  For instance, for a project with 

many tapers and turnouts, it may not be practical to use a design with Cement-Modified Subbase 

and Graded Aggregate Base. In a case such as this, it may be more practical to provide a full-

depth asphalt design, preferably where the base is placed in a single lift. 
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S.C. Department of Highways and Public Transportation 
 
Coefficients of Relative Strength for 


 Flexible Pavement Components 
 
 

July, 2008  

Pavement Component  
   
Surface Course           a1  
     
HMA Surface ........................................................................................................................................... 0.441 
 
HMA Intermediate ................................................................................................................................. 0.441 
 

Open Graded Friction Course .............................................................................................................. 0.441 
 
Bituminous Surfacing............................................................................................................................. 0.35 
 
 
 
Old Surface  
 
Old Asphalt Concrete Surface ............................................................................................................. 0.26
  
Old Asphalt Concrete Binder .............................................................................................................. 0.26
  
Old Sand Asphalt.................................................................................................................................... 0.16
  
Bituminous Surfacing............................................................................................................................. 0.21
  
   
Base  a2  
  
Sand-Clay Base ....................................................................................................................................... 0.12-0.202 
 
Coquina Shell Base ................................................................................................................................ 0.12
  
Graded Aggregate Base ......................................................................................................................... 0.18
  
Cement Stabilized Earth Base............................................................................................................... 0.25
  
Asphalt Base, Type D ............................................................................................................................ 0.252 
 
Asphalt Base, Type A, B and C............................................................................................................. 0.34
  
Cement Modified Recycled Base.......................................................................................................... 0.26 
 
Cement Stabilized Aggregate Base...................................................................................................... 0.34
  
Old PCC Pavement ................................................................................................................................ 0.40
  
    
Subbase  a3  
           
Soil Aggregate Subbase ......................................................................................................................... 0.10
  
Cement-Modified Subbase.................................................................................................................... 0.152 
 

Note 1. If the combined new HMA Surface and HMA Intermediate course rate exceeds 400 
pounds per square yard, then coefficient of the excess material over 400 psy is reduced to 
0.34.  OGFC is not included in this total. 

Note 2. Coefficient dependent on the quality of material available. 

Figure 3 - Layer coefficients for South Carolina material 
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Table III – Guidelines for Hot Mix Asphalt Type Selection 

Type Facility 

Interstate, 
Intersections, 
and Problem 

Areas 

NHS, 
Primary, and 
High Volume 

Secondary 
(more than 
10,000 vpd) 

Primary and 
High Volume 

Secondary 
(10,000 vpd or 

less) 

Low Volume 
Primary and High 

Volume 
Secondary (5,000 

vpd or less) 

Low Volume 
Secondary (1500 vpd 

or less) 

A
sp

ha
lt 

T
yp

e 

Surface  Type A Type B Type CM Type C Type D 

Intermediate 

Type B 
-or-

Type A 
(problem 

areas only) 

Type B 
(min. rate 
200 psy) 

Type C 
(minimum rate 200 psy) 

HMA Base Type A or C Type B, C, or D 

Leveling and 
Build-up 

Surface Types B, CM, C, or E 
Intermediate Type B 

HMA Base Type A or C 

Surface Types C, D, or E 
Intermediate Type C 

HMA Base Type B or D 
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B. New Rigid Pavement Design 

New rigid pavement design is based on a modified form of the 1998 AASHTO design 

methodology. Inputs to the rigid pavement design process include Modulus of Subgrade 

Reaction (k), Equivalent Single Axle Loads (ESALs), Change in Serviceability (DPSI), Modulus 

of Rupture of PCC (  Sc 
' ), Modulus of Elasticity for PCC (Ee), Load Transfer Coefficient (J), 

Drainage Coefficient (Cd), Combined Standard Error of Traffic and Performance Prediction (S0), 

and Standard Normal Deviate (ZR). Based on these inputs, the thickness of the slab (D) is 

provided. 

1. Modulus of Subgrade Reaction 

Modulus of Subgrade Reaction is equivalent to Westergaard’s modulus of subgrade 

reaction. It represents the load in pounds per square inch on a loaded area divided by the 

deflection in inches of that loaded area. This modulus has also been referred to as the “dense 

liquid” constant or the “spring” constant. 

Direct determination of k is made by means of a plate-bearing test; a time-consuming and 

difficult procedure.  Due to the difficulty involved, the test is rarely performed. Precise 

determination of k is made more difficult by the addition of a base course beneath the rigid 

pavement. The 1998 revisions to the AASHTO design methodology describe in detail the 

procedures to calculate the combined k of the base and subgrade.  However, rigid pavement 

thickness is relatively insensitive to this parameter and an estimate based on average values is 

usually sufficient. 

2. Traffic 

Equivalent Single Axle Loads (ESALs) are defined in the previous section on flexible 

pavement design. However, different vehicles affect rigid pavement differently from flexible 

pavements. This results in ESAL factors for rigid pavements that are different and typically 

higher than those for flexible pavements.  It is important to use the ESAL factor appropriate for 

the type of pavement being designed. See Tables I and II for ESAL factors for rigid pavement. 
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3. Change in Serviceability 

Terminal serviceability (pt) for rigid pavement is the same as for flexible pavements (2.5 

for limited-access, 2.0 for all others).  However, rigid pavements are traditionally assumed by 

AASHTO to have a slightly higher initial serviceability than flexible pavements (4.5 for rigid 

versus 4.2 for flexible). Unlike the 1972 equation for flexible pavements, the 1998 equation for 

rigid pavements asks for a change in serviceability rather than a terminal serviceability. So, the 

change in serviceability for rigid pavement is 2.0 for limited access and 2.5 for all other 

conditions and is determined by subtracting the terminal serviceability from the initial 

serviceability. 

4. Moduli of Rupture and Elasticity of PCC 

The design equation requires modulus of rupture at 28 days.  Based on data collected 

from 28-day breaks of samples from construction projects, the actual 28-day modulus of rupture 

is assumed to be 600 psi. However, the design modulus of rupture is assumed to be 75 percent 

of the actual modulus. Consequently, a value of 450 psi is typically used for design. 

Modulus of elasticity is not measured for paving concrete in South Carolina.  It is 

assumed to be equal to 4,200,000 psi, which was the value used in the earlier versions of the 

AASHTO design equation. 

5. Load Transfer Coefficient 

The load transfer coefficient (J, also sometimes referred to as the edge protection factor) 

is used to adjust for the load transfer characteristics for a specific design. This term is related to 

the shoulder type and the use of dowel bars. Factors recommended for design are given in Table 

IV. If the outside lanes of a project are designed to keep the edge of the lane at least 2 feet from 

the edge of the pavement (i.e., a lane width of 14 feet or more, striped for 12 feet), then the 

coefficients for concrete shoulders may be used regardless of the shoulder type. 
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Table IV – Recommended load transfer coefficient (J) for various design conditions 

Shoulder Type Asphalt Concrete 
Dowel Bars Yes No Yes No 

3.2 4.1 2.7 3.9 

6. Drainage Coefficient 

The 1998 design equation has an allowance for drainage conditions beneath the slab.  The 

use of this coefficient is not recommended. Consequently, a value of 1.0 is used for all 

conditions. Although not explicitly included in the design, the importance of drainage beneath 

the slab cannot be understated.  However, the use of a coefficient greater or less than 1.0 implies 

that adjustments in slab thickness can compensate for good or bad drainage conditions. 

Concerns over the validity of this concept have precluded its use by SCDOT. 

7. Combined Standard Error of Traffic and Performance Prediction 

The combined standard error of traffic and performance prediction (So) is intended to 

represent the total error for all aspects of the pavement design. However, SCDOT does not 

utilize the reliability coefficient in the design and prefers to use individually adjusted input 

factors. Consequently, the value of So is irrelevant because the term of the equation that uses So 

is zero. 

8. Standard Normal Deviate 

The standard normal deviate (ZR) is based on the desired reliability for the design. 

However, SCDOT has not adopted the use of reliability as defined by AASHTO, so the value of 

ZR is designated as zero. This corresponds to 50 percent reliability. 

9. Slab Thickness 

Slab thickness (D) is determined from the AASHTO performance equation.  This 

equation is as follows: 
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No closed-form solution for D exists for this equation.  Consequently, this equation must 

be solved iteratively for different values of D until convergence is reached for the desired value 

of ESALs. Past experience has shown that rigid pavement thicknesses less than 9 inches are to 

be used with caution and 8 inches is the minimum allowable rigid pavement thickness.  

Graphical solutions to this equation are included in the 1993 AASHTO Design Guide, but 

computer-based solutions are recommended. 

10. Other Considerations 

Beyond slab thickness, consideration of other factors must be made in the design process. 

These considerations are:  

Rigid Pavement Type (JP, JR, CR)
 
Joint Spacing and Load Transfer
 
Base Type
 
Subsurface Drainage
 
Shoulder Design
 

The preferred rigid pavement type in South Carolina is a jointed, plain (JP) PCC. This 

type of pavement has provided outstanding performance, with pavements lasting over 30 years 

under higher than design traffic loadings without rehabilitation in many cases. Continuously 

reinforced PCC was used extensively in South Carolina in the 1970’s. However, the 

performance of this type of pavement has been lower than for jointed plain PCC pavement. 

Jointed reinforced pavement has been used extensively in the northeast and midwest United 
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States, but has been largely supplanted by the other types of PCC pavement for new 

construction. 

Joint spacing for rigid pavement in South Carolina has ranged from 15 to 30 feet.  During 

the 1960’s and 1970’s, 25-foot joint spacing was typical.  In the 1970’s and 1980’s SCDOT 

constructed pavements with a pseudo-random joint spacing of approximately 20 feet.  Some 

pavements in the 1970’s (principally portions of I-95 and I-20) were also constructed with a 2:12 

skew to reduce the dynamic effect of traffic on the joints. All jointed PCC pavement built in 

South Carolina prior to 1976 depended on aggregate interlock to provide load transfer. 

The purpose of the random joint spacing was to avoid harmonic excitation of automotive 

suspensions (also known as “freeway hop” or “pogoing”). Some 1950’s automobiles with 

extremely soft suspensions would exhibit severe harmonic excitation when driving on faulted 

concrete pavement with 15-foot joint spacing.  Consequently, research by General Motors 

indicated that joint spacing divisible by 7.5 feet was to be avoided. However, improvements in 

automotive design have largely eliminated this problem in modern cars, rendering random joint 

spacing and avoidance of multiples of 7.5 feet unnecessary. 

Research conducted on SHRP data and other sources have indicated a strong correlation 

between increased pavement life and shorter joint spacing. This relationship is not reflected in 

the 1998 AASHTO design equation, but will be included in future design equations. Until a 

better relationship is developed, it is recommended that a uniform 15-foot joint spacing be used 

on all new concrete pavements. Any spacing used should be evenly divisible by 2.5 feet to 

ensure compatibility with the tie bar spacing. 

Aggregate interlock was the method used in South Carolina until the mid-1970’s to 

provide load transfer across pavement joints. While working well initially, this type of joint 

loses its interlock with time, causing the pavement to fault and develop unacceptable ride quality. 

Due to this problem, positive load transfer through dowelled joints is recommended for all new 

rigid pavements. The diameter of the dowel bar is typically 1¼ inch on pavement ten inches 
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thick or less and 1½ inch on pavements up to twelve inches. For pavements greater than twelve 

inches, consult the SCDOT Pavement Design Engineer for specific recommendations. 

Pumping of base material leading to faulting of concrete pavement joints has been a 

major distress for South Carolina’s rigid pavements. In addition to positive load transfer, 

adequate design is required to retard these problems and improve performance.  Even with 

highly effective maintenance, any jointed rigid pavement will be subject to intrusion of surface 

water. To extend pavement life, positive drainage may be incorporated into all rigid pavement 

designs. This will typically consist of a base material specifically engineered for mechanical 

stability and high hydraulic conductivity. The permeable material must be connected to a series 

of drains with pipe-type outfalls.  Daylighting of base material has not performed well previously 

and is not considered acceptable. 

Although it is a generally accepted principle that improved drainage will extend the life 

of a concrete pavement, the degree of actual life extension provided by a positive drainage 

system is not well defined. Additionally, it is questionable in the very long term whether the 

drainage system will continue to perform properly or will eventually clog and become a ready 

sump to hold water. It is unknown whether maintenance forces will be consistently available in 

the future to maintain the outlets and ensure that the drains flow freely.  More recent research 

indicates that pumping at pavement joints is considerably reduced by the use of shorter slab 

spacing, positive load transfer, and erosion-resistant base materials.  Consequently, each project 

needs to be evaluated individually to determine whether a drainage system is desirable. 

A key factor in the performance of concrete pavements is the selection of base material 

type. Unlike asphalt pavements, concrete pavement thickness is relatively insensitive to the 

overall stiffness of the base and subgrade.  Prior to WWII, when concrete was the standard 

paving material for primary pavements, the pavement was frequently placed directly on 

compacted subgrade without a base course. Given the low traffic and axle loads of the time, 

pavement constructed in this manner performed quite well and many of these pavements 

continue to perform under a thin lift of asphalt after 70 or more years. 
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Although the pavement thickness is relatively insensitive to the base stiffness, the 

performance of concrete pavement is still strongly affected by the base selection.  To perform 

well, the base material must be insensitive to moisture and resistant to erosion. Additionally, 

while the total stiffness of the base is not critical, the uniformity of support is very important.  If 

the base has areas that are less stiff than the surrounding material, undesirable stress 

concentrations are created in the concrete slab. These stresses will lead to early failure of the 

slab and cracking. Bases that are too stiff may also lead to undesirable concentration of stress 

when the concrete slabs warp and curl due to temperature differentials between the top and 

bottom of the slab. 

Consequently, concrete (including Roller Compacted and Lean) and cement stabilized 

aggregate bases are not recommended due to their high stiffness.  Earth Type (Sand Clay) Base, 

Marine Limestone Base, Coquina, Sand Asphalt, and Cement Stabilized Earth Base are not 

recommended directly beneath the slab due to their erosion characteristics.  Macadam Base made 

entirely from crushed granitic aggregate and Asphalt Aggregate Base are acceptable base 

materials for lower volume concrete pavements. For interstates and other high volume routes, a 

course of Asphalt Surface – T1 is strongly recommended directly beneath the slab.  However, 

any of the bases types listed above may be used if they are capped by a course of asphalt surface. 

C. Shoulder Design Guidelines for New Pavement 

In general, it is recommended that the shoulder pavement type be the same as the 

mainline type. For new flexible pavements, shoulders may be designed using the same structural 

techniques as for the mainline pavement. The design inputs for flexible shoulders are the same 

as for flexible mainline pavement, except for the traffic level.  For shoulders, the traffic is some 

fraction of the mainline traffic and represents the percentage of encroaching and parked traffic 

using the shoulder. Studies conducted in other states indicate that one to eight percent of trucks 

will encroach upon the shoulder at any given point.  An additional one-half percent of trucks will 

use the shoulder for parking. Consequently, it is recommended that a flexible shoulder be 

structurally designed to withstand three to five percent of the mainline traffic.  If the shoulder is 

to be used as a traffic lane in the future, this should also be considered in the design process. 
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Shoulders for new rigid pavements should be tied to the mainline pavement using tie 

bars. The shoulder may be constructed out of a leaner concrete mixture than the mainline 

pavement, but should be the same depth. Where applicable, the structural benefits of tied 

shoulders may be achieved by widening the lane two feet, them marking the pavement to 

discourage traffic from using the additional width.  This is only recommended in areas where the 

pavement will never be widened to include another lane, because the traffic in the future lane 

would be operating on top of the old lane/shoulder joint. If a fourteen-foot outer lane is used, the 

remaining shoulder thickness may be constructed using asphalt designed for two to three percent 

of the mainline traffic. 

D. Selection of Pavement Type 

The selection of pavement type is not an exact, objective process, but one in which the 

pavement designer must make judgments on many varying factors.  The pavement type selection 

may be dictated by an overriding consideration for one or more of these factors. The predominant 

factors in the selection process are given below. 

The selection process may be facilitated by comparison of alternate structural designs for 

one or more pavement types using theoretical or empirically derived methods. However, such 

methods are not so precise as to absolutely guarantee a certain level of performance from any 

one alternate or comparable service for all alternates. 

Comparative cost estimates can be applied to alternate pavement designs to aid in the 

decision-making process.  The cost for the service of the pavement would include not only the 

initial cost but also subsequent costs to maintain the service level desired. It should be noted that 

these procedures are also imprecise due to the lack of information on costs attributable to future 

events such as maintenance, salvage value, and the value of reduced service to the road user. 

Even if structural design and cost comparison procedures were perfected, by their nature 

they would not encompass all factors that should be considered in pavement type selection. Such a 
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selection should properly be one of professional engineering judgment based on the consideration 

and evaluation of all factors applicable to a given highway section. 

Beyond economic analysis, a variety of factors affect the pavement type selection process. 

Some of these factors are: 

•	 Construction Considerations:  Staged construction of the pavement structure may dictate 

the type of pavement selected. Other considerations such as speed of construction, 

accommodating traffic during construction, safety of traffic during construction, ease of 

replacement, anticipated future widening, seasons of the year when construction must be 

accomplished, and others might have a strong influence on paving type selections in 

specific cases. 

•	 Initial Cost: While it is desirable to compare pavement costs on the basis of the entire life-

cycle, it must be recognized that available resources are finite. In cases where a pressing 

need for construction exists, deferring needs until adequate resources are available to build a 

more expensive structure may not be an option. In these cases, first cost becomes an 

overriding concern in the selection process. 

•	 Adjacent Existing Pavement: Provided there is no major change in conditions, the choice of 

a pavement type may be influenced by adjacent existing sections that have given adequate 

service.  The resultant continuity of pavement type serves to simplify maintenance and 

rehabilitation activities. 

•	 Stimulation of Competition: It is desirable that monopoly situations be avoided and that 

improvement in products and methods be encouraged. These goals are aided by healthy 

competition among industries involved in the production of paving materials. 

•	 Ease of Maintenance: Certain pavement alternatives may provide a superior life-cycle 

cost, but may also entail frequent or complex maintenance activities.  While SCDOT 

strives to provide excellent maintenance for its facilities, there is no assurance that 

additional resources may be available for options that require unusual levels of 
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maintenance. Consequently, pavement designs should be considered realistically when 

their future performance is based on critical maintenance activities. 

•	 Local Preference and Recognition of Local Industry: While these considerations may seem 

to be outside the realm of pavement design, highway administrators cannot always ignore 

them. This is especially true when many other factors involved are indecisive with respect 

to the selection process. 

SCDOT has a formal pavement type selection procedure detailed in Engineering Directive 

Memorandum 15. 

E. Selection of Pavement Design Life 

Selection of pavement design life should be coordinated with a Pavement Management 

System. In South Carolina the traditional design life for new flexible and rigid pavement has 

been 10 and 20 years respectively. The lesser design life for flexible pavement is in recognition 

of flexible pavement’s historical tendency to deteriorate after approximately 12 to 15 years 

regardless of traffic. The activities necessary to address this deterioration also provide an 

incremental structural increase sufficient to extend the pavement life to 20 years or more.  Also, 

flexible pavements are easy to improve structurally with overlays while rigid pavements are not 

easily improved once constructed. For pavement designs using Superpave mixes and modified 

binders, a 20-year design life is used in the hope that the improved binders will provide a longer 

functional life than traditional asphalt mixes. A 10-year design life is used for pavements with 

conventional mixes. 

Rigid pavement constructed with “modern” features such as positive load transfer at 

joints, slab lengths less than 20 feet, edge support from tied concrete shoulders or widened lanes, 

and subdrainage systems are designed for at least 30 years. Since 30-year traffic estimates are 

not available, the designs are based on double the 20-year traffic estimate. 
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Observations of in-service pavements indicate that the pavement design procedures used 

by the SCDOT are quite conservative. Generally, it appears that a typical 10-year flexible 

pavement design will last approximately 12 to 15 years before requiring rehabilitation.  Typical 

jointed concrete 20-year designs, have typically lasted 25 to 35 years. 

IV. Rehabilitation of Existing Pavement 

A. Introduction 

Much of the major highway mileage in South Carolina has been constructed over the last 45 
years. In recent years, the overall emphasis is turning from construction of new roadways to the 
preservation and improvement of the existing system. A large portion of the system is well past the 
end of its initial design life and will be required to carry traffic well into the future. 

Nationally, the pavement design community is beginning to look at longer-term 
rehabilitation than has traditionally been performed. This is based on the developing awareness 
that, for instance, if all pavement rehabilitation activity in a system is designed for a 10-year life, 
eventually 10 percent of the highway network will require rehabilitation every year. In order to 
develop a network condition that is sustainable, pavement rehabilitation must be coordinated with 
pavement management to develop an appropriate strategy for selection of rehabilitated pavement 
design life. 

Pavement rehabilitation activities fall into two broad classes. The first type of activity is 
structural, that is, it increases the load carrying capability of a pavement structure.  Examples of this 
type of rehabilitation are asphalt overlays for asphalt pavements and the addition of tied PCC 
shoulders for rigid pavements. The second type of activity is non-structural.  This type of activity is 
performed when the pavement is structurally sound, but no longer provides adequate serviceability. 
Examples of this type of activity are microsurfacing of flexible pavements and diamond grinding of 
rigid pavement. Many structural rehabilitation activities also provide a functional improvement, but 
not vice-versa. 
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B. Rehabilitation of Flexible Pavement 

Flexible pavement structural rehabilitation is based on AASHTO's "Thickness Deficiency" 
approach. This approach assumes that a pavement in need of rehabilitation is structurally deficient. 
It further assumes that as a pavement ages and wears, its effective thickness decreases. So, by 
increasing the pavement's thickness, the structural deficiency may be relieved. 

Typically, flexible pavement rehabilitation involves the placement of an asphaltic concrete 
overlay. Other techniques, such as in-place recycling and rigid (PCC) pavement overlays, may be 
considered on a special, case-by-case basis. 

For structural evaluation of flexible pavement, it is necessary to determine the effective 
structural value of the existing pavement. Once the effective structural value of the existing 
pavement is known, it may then be compared to the structural value needed to carry future traffic. 
The difference between the two values determines the appropriate overlay thickness. 

Structural evaluation of existing pavement may be done by two methods. These are the 
Coefficient Depreciation Method and the Direct Measurement Method. Direct Measurement 
requires the use of nondestructive testing (NDT) to determine the pavement strength. 

The Coefficient Depreciation Method requires engineering judgment to make assumptions 
based on the visual condition and age of a pavement. If distress appears to be limited to the surface, 
with only slight to moderate cracking, then it is assumed that distress is occurring primarily in the 
upper pavement layers. In this case, the surface and binder courses are depreciated to 60 percent of 
their original structural value while other pavement components are given their original structural 
value. This results in an AC surface and binder structural coefficient of 0.26 versus the original 
value of 0.44. If more than 4 inches of surface and binder are present in the pavement, the 
additional depth is considered part of the base and given a coefficient of 0.34.  If cracking is severe, 
then it is assumed that the distress has extended through the AC-bound material in the pavement and 
the AC-bound portion of the base is depreciated to 70 percent of its original structural value.  This 
results in a structural coefficient of 0.24 versus an original value of 0.34. If the pavement exhibits 
rutting and distress indicative of shear failure in the base material, then the damage to the pavement 
is assumed to extend to the subgrade. This results in depreciating the base material to 80 percent of 
its original value. These judgements are highly subjective and require personnel familiar with 
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various modes of pavement failure. When properly applied, however, this technique has proven to 
give an excellent indication of needed overlay thickness. 

The Direct Measurement Method is preferred for the determination of flexible pavement 
structural capacity. This method uses a Falling Weight Deflectometer (FWD) to measure the 
pavement's deflection response under load. This response is then converted to structural capacity 
through the backcalculation of pavement properties.  The techniques used to convert response to 
structural capacity are complex and require the use of computer software for analysis. A report 
titled Design of Flexible Pavement Overlays by Dynamic Deflections (HPR #544) details the 
procedures used for this type of analysis.  The results of this type of analysis are the same as for the 
Coefficient Depreciation Method, a reduced structural number indicating the current in situ 
condition. 

Once the in situ structural number for a project has been determined, the required structural 
number is determined exactly as for new flexible pavement. The difference between the new and 
existing structural numbers is the structural requirement for the overlay. It is recommended that 
both techniques for structural evaluation be performed.  If a large difference exists between the two 
methods, then the source of the discrepancy should be investigated. 

In many cases, the structural capacity will be as high as or higher than the required structural 
number, indicating no structural need for an overlay.  In these instances, restoring adequate 
serviceability will control the selection of rehabilitation activities. The use of pavement milling to 
remove aged or unstable material should be examined on a case-by-case basis. 

C. Rehabilitation of Rigid Pavement 

A variety of techniques are available to rehabilitate rigid (PCC) pavement. Unlike flexible 
pavement, the in situ structural capacity of rigid pavements is not easy to estimate.  Even if the 
structural capacity of the pavement is known, increasing that capacity to meet future needs is not 
easily accomplished. The two predominant types of rigid pavement in South Carolina are Plain 
Jointed and Continuously Reinforced. These pavements function differently and must be 
rehabilitated with different techniques. 
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1. Plain Jointed PCC Pavement Rehabilitation 

Typically, plain jointed rigid pavement in South Carolina begins to exhibit unacceptable 
serviceability after twenty to thirty years of service. Aggregates in South Carolina are primarily 
non-reactive, so the durability of PCC does not present a problem.  Rehabilitation activities for plain 
jointed rigid pavement may include: 

Grinding
 
Retrofit Pavement Drainage
 

Pressure Grouting
 
Slab Replacement and Patching
 

Joint Cleaning and Sealing
 
Retrofit Concrete Shoulders
 

Asphaltic Overlay
 
Crack and Seat
 
Reconstruction
 

Rubblizing
 

Grinding:  The most severe problem typically encountered with rigid pavement in South Carolina is 
faulting. Prior to the mid-1970s, rigid pavement was constructed with undowelled joints and relied 
on aggregate interlock to provide load transfer between slabs. However, aggregate interlock has 
been found to be inadequate to withstand the high levels of traffic encountered on Interstate 
highways. As a result, the pavement faults through differential slab motion and associated pumping 
of fine material from the base course. Once interlock has been lost, there is currently no cost-
effective way to restore it. If this type of distress is encountered, it is usually remedied by grinding 
the pavement to restore an appropriate profile. Pumping of fines from the base will continue, 
resulting in the recurrence of unacceptable faulting levels after approximately three to eight years. 
Grinding can only be applied to severe faulting once or twice before the structural integrity of the 
slab is compromised. However, when applied to pavements which are otherwise structurally sound, 
grinding may significantly extend the useful life of rigid pavement. 

Retrofit Pavement Drainage: To reduce the rate of pumping, provisions to provide drainage of 
water from beneath the pavement may be beneficial. However, it is critical that the drainage outlets 
from such a system be maintained properly. If water is unable to exit these pavement drains, the 
entrapped moisture can greatly accelerate the distresses the drains were installed to alleviate. Since 
retrofit pavement drains may be harmful to the pavement structure under some conditions, the 
SCDOT now only recommends the use of such drainage where clear evidence of moisture related 
distress is noted. 

23
 



 

 

   
   

 

 
 

 
 
 

 
 

 
 

 

 
 

   
 

 
 
 
 
 

 
 

 
 
 
 
 
 
 

Pressure Grouting: Another rigid pavement rehabilitation activity to be applied with extreme 
caution is the use of pressurized grout or expanding urethane foams (sometimes referred to as 
undersealing) to fill voids beneath slabs. Although pressure grouting can give good results if it is 
applied with great skill, many times too much grout is applied. The excess volume of grout tends to 
lift the slab and create a new void behind the original void.  Therefore, the use of this technique is 
only recommended in special cases. 

Slab Replacement and Patching:  Frequently, pavement distress will appear in a localized area 
surrounded by otherwise sound pavement. Typically, this type of distress is caused by inadequate 
subgrade preparation or problems with paving materials. If the conditions are sufficiently localized, 
then complete removal and replacement of distressed slabs may be an adequate rehabilitation 
activity. If the distress is even smaller, such as an isolated corner break due to pumping, then a 
patch may also be acceptable. Due to superior performance, patches should be full-depth. 

Joint Cleaning and Sealing:  Although ideally a maintenance activity, in South Carolina most 
jointed pavement in need of rehabilitation is also in need of joint cleaning and sealing.  This activity 
is highly recommended, even if the pavement is to be overlaid with asphalt concrete. 

Retrofit Concrete Shoulders:  Most of the early concrete pavements built in South Carolina were 
constructed with very thin asphaltic shoulders. Research has shown that tied concrete shoulders 
significantly reduce edge stresses in the mainline pavement, resulting in improved pavement fatigue 
life. However, the addition of tied concrete shoulders to older pavements is not always cost-
effective. Generally, if a pavement has undergone significant traffic loading, then the increase in 
fatigue life is small. As a rule of thumb, tied concrete shoulders are added only when 5 percent or 
less of the slabs in a pavement are broken. Beyond this level, it is assumed that the pavement is 
worn to the point that the increase in fatigue life is negligible. Also, the addition of tied concrete 
shoulders was previously thought to reduce slab faulting.  However, it has been found that retrofit 
tied shoulders do not reduce faulting appreciably. 

Asphaltic Overlay:  If the concrete pavement is showing signs of fatigue failure such as transverse 
mid-slab cracking, one rehabilitation technique is to clean and seal the pavement joints, repair 
severe distress, and then overlay with approximately 4 inches of asphalt. Although these overlays 
have performed within expectations, several problems tend to occur. Joints in the concrete 
pavement will cause reflective cracks in the asphalt overlay.  Once the asphalt becomes cracked, 
water infiltrates the pavement structure and becomes trapped at the asphalt/PCC interface and may 
also penetrate to the PCC pavement's base through unsealed joints. The water at the asphalt/PCC 
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interface develops high hydraulic pressures under wheel loads. The high pressures can, in turn, 
frequently cause the asphalt to debond from the aggregate in the paving mixture and become 
unstable. This is referred to as stripping. These cracks also may spall under traffic loading. 
Research is ongoing to reduce these problems, but little success has been achieved to date. The 
most successful technique for reflective crack control has been to saw and seal the asphalt overlay. 
Use of hydrated lime and crushed aggregates in asphalt concrete, both of which are now required, 
should reduce the level of stripping encountered. 

Crack and Seat:  Crack and seat is a technique to reduce reflective cracking. It involves cracking 
the concrete slabs into pieces approximately 1½ to 3 feet long, seating the cracked pieces with a 
heavy roller, and placing an asphaltic overlay. By reducing the slab length, the slab action of the 
PCC pavement is reduced, resulting in reduced reflective cracking. This technique is only 
performed in cases where extensive distress makes pre-overlay repair more expensive than cracking 
and seating. It is important to note that the cost of cracking and seating not only includes the 
cracking operation, but also more extensive traffic control and a greater asphaltic overlay thickness. 

Reconstruction:  If pavement distress has become extremely severe, an ultimate rehabilitation 
option is reconstruction of the pavement. For rigid pavement, reconstruction is defined as the total 
removal and replacement of at least the PCC layer, and possibly some base layers.  The great 
advantage of this strategy is that design changes, such as the addition of subsurface drainage and 
load transfer, may be made as part of the reconstruction. 

Although it is technically feasible to remove a rigid pavement and replace it with a flexible 
pavement, in this instance rubblizing (described below) would be a more logical approach since 
removal of the concrete would involve the loss of any structural contribution of the concrete and 
entail considerable transportation and disposal costs. 

The two main disadvantages of reconstruction is the cost, as compared to the other 
strategies, and the difficulty of traffic control during construction. However, as our rigid interstate 
pavements progress into their fifth decade of service and beyond, this strategy may become more 
commonplace assuming issues such as traffic control can be addressed. 

Rubblizing:  Another extreme option in rigid pavement rehabilitation is rubblizing.  Unlike cracking 
and seating, which seeks to induce closely spaced cracks in the old rigid pavement, the intent of 
rubblizing is to reduce the PCC in the pavement to the equivalent of an unbound aggregate base. 
This totally eliminates the problem of reflective cracking in the overlaid pavement. 
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The disadvantage of rubblizing is that extensive traffic control is needed during 
construction, and the structural capacity of the underlying concrete is greatly reduced. Because of 
the lower structural capacity, typically a very thick overlay is required to achieve structural 
adequacy. In addition to the cost of the asphaltic material, considerable grading may be required to 
adjust the shoulders and median to the new pavement grade. Also, reconstruction near bridges or 
bridge jacking may be needed to achieve adequate overhead clearance. 

2. Rehabilitation of Continuously Reinforced Concrete Pavement 
The interconnected nature of continuously reinforced concrete pavement (CRCP) requires 

different techniques for rehabilitation from jointed plain concrete pavement (JPCP). Since CRCP 
does not have pavement joints, faulting is not a problem.  However, through the mid-1970's when 
most of South Carolina's CRCP was designed, it was believed by pavement designers that CRCP 
could be built approximately 2 inches thinner than an equivalent jointed pavement. This has had 
severe consequences for the longevity of CRCP.  Examination of the AASHTO pavement design 
equation shows that for each inch of thickness added to a rigid pavement, the pavement's life is 
roughly doubled. Therefore, cutting pavement thickness by 2 inches effectively reduces the 
pavement life by a factor of four. 

Because of earlier pavement design practices, much CRCP in South Carolina is exhibiting 
fatigue-related distresses, primarily longitudinal wheelpath cracks and punchouts.  Since these 
distresses are signs of structural inadequacy, simple repair of punchouts is frequently not sufficient 
because the punchouts will continue to occur at an accelerating rate. At this stage, some form of 
structural improvement is needed. Although PCC overlays have been tried in other states, South 
Carolina has no experience with this type of repair and problems encountered in neighboring states 
tend to preclude using bonded PCC overlays. 

Experience in South Carolina as well as in other states has shown that asphaltic overlays are 
excellent at arresting punchout development. However, the mechanics of punchout reduction for 
this repair strategy are not well understood.  Linear elastic analysis of asphalt over concrete 
pavement systems indicates that a 4 inch (10 cm) asphaltic layer over a CRCP has little or no effect 
on the stress developed within the CRCP layer. It is theorized that the asphaltic overlay serves to 
reduce temperature-induced stresses, preventing the formation of harmful tensile stresses in the 
CRCP. 
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APPENDIX A.
 

Preliminary Site Investigation for Pavement Design and Assignment of Soil Support Value 

The objective of the preliminary site investigation for pavement design is to become 

familiar with the topographic and geological conditions of the proposed highway location.  

During this investigation, the preliminary plans are studied, if available, and a visual inspection 

of the proposed location is usually made to determine the type of drilling equipment needed and 

resolve any problems the drilling crew may encounter during drilling operations. 

1. Soil boring and sampling 

Usually, soil borings are made along the centerline of the proposed location at 

approximately 500-foot intervals.  In the case of rehabilitation of existing pavement, if the 

original soil boring information is unavailable, borings may be made in the shoulder. The 

borings are extended to a depth of five feet below the proposed grade line in cut sections and five 

feet below the existing ground line in fill sections.  Additional borings are usually made in 

potential problem areas such as deep cuts, swamps or marshes, and section where high 

groundwater table and/or rock is encountered. Soil samples are taken from each stratum at each 

boring site.  A boring log is maintained for each boring site indicating the depth, texture and 

color of each soil sample. The approximate depths to rock and the water table are also recorded 

when encountered. 

Soils samples are taken from the full depth of the borings, even in areas where cut is planned.  

Although the soils in the strata above the proposed grade will not underlie the pavement at the 

location of the boring, it is likely that this material will be used as fill elsewhere along the 

project. Consequently, all soil samples are evaluated unless it is clearly specified that the cut 

material will be hauled off the project and wasted. Otherwise, all samples taken during the 

boring and sampling operation are identified by location, depth, and color and classified in the 

laboratory. 

At boring sites where groundwater is encountered, the approximate elevation of the 

groundwater table is established by leaving the bore hole open and checking the depth to water 
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after a minimum of four hours in the case of cohesionless soils and after a minimum period of 24 

hours for cohesive soils. Although this information is recorded, the user of this information is 

strongly warned that the groundwater table may vary seasonally and in response to climatologic 

change, such as drought.  Consequently, water table location may be prone to change between 

the time of investigation and construction. 

2. Soil Support Value 

The design method outlined in the SCDOT Pavement Design Guide was developed from 

tests and measurements on experimental sections of highway built at the original AASHO Road 

Test in Ottawa, Illinois and supplemented by a program of investigation at Clemson University 

and the University of South Carolina.  To allow application of the AASHTO design method at 

locations outside of Ottawa, the Soil Support Value (SSV) scale was developed.  In order for this 

method to be used by the SCDOT for design purposes, a correlation has been established 

between SSV and values obtained for soil testing procedures conducted by the SCDOT Office of 

Materials and Research. 

The Soil Support Value is a dimensionless number indicating the quality of the soils at a 

given location relative to the original Road Test. Values greater than 3.0 are indicative of soils 

with roadbed support capabilities superior to those in Ottawa.  However, when the original 

pavement design methodologies were being developed, no consensus on a standardized test 

could be reached because different areas of the county have different roadbed support issues.  

Consequently, each state was left to develop a SSV scale based on their experience and testing 

preference as part of the overall calibration process necessary to adopt the AASHTO 

methodology in a given location. 

As a result, methods and values assigned to given soil types vary widely around the 

country. Generally, these differences are offset by differences in design life, terminal 

serviceability, and other inputs to the design procedure. The outcome of this process is that SSV 

CORRELATIONS DEVELOPED IN OTHER STATES ARE NOT VALID WHEN USED 

WITHIN THE OVERALL PAVEMENT DESIGN PROCESS IN SOUTH CAROLINA!!! 

TO MAINTAIN THE ORIGINAL ASSUMPTIONS INHERENT IN THE EMPIRICAL 
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DESIGN PROCESSES, THE CORRELATIONS GIVEN IN THIS REPORT MUST BE 

USED. VALUES FROM NORTH CAROLINA, GEORGIA, OR TEXAS, AS WELL AS 

OTHER STATES, ARE NOT VALID SINCE OTHER FACETS OF THEIR DESIGN 

METHODOLOGIES ALSO VARY FROM SCDOT PRACTICE. 

3. AASHTO classification 

Soil samples are prepared for testing at the laboratory in accordance with AASHTO T 87, 

“Dry Preparation of Disturbed Soils and Soil Aggregate Samples for Test”.  The soils are then 

tested using procedures as set forth in SC-T-34, “Mechanical Analysis of Soils (Elutriation 

Method)”; AASHTO T 89, “Determining the Liquid Limit of Soils”; and AASHTO T 90, 

“Determining the Plastic Limit and Plasticity Index of Soils”.  After these tests are completed, 

each soil sample is classified according to AASHTO M 145, “The Classification of Soils and 

Soil-Aggregate Mixtures for Highway Construction Purposes”.  The result of all the tests are 

added to the soil boring log to show the AASHTO classification of each soil sample along with 

rock and/or groundwater information and the logs are distributed to field and road design 

personnel for their use. 

4. CBR testing 

The number of soil samples taken for CBR testing depends upon soil conditions.  

However, as a general rule, one CBR sample is taken per mile of roadway. These samples are 

usually taken from the soil stratum at or near the proposed subgrade elevation and representative 

of the predominant soil types encountered. 

Soil samples for CBR tests are prepared and tested initially from AASHTO classification 

as outlined previously. AASHTO T 99, “The Moisture-Density Relations of Soils Using a 5.5­

pound Rammer and a 12-inch Drop”, is used to determine the maximum dry density and 

optimum moisture content. Method B is used for samples on which CBR tests are to be 

conducted. 

After the maximum dry density and optimum moisture content have been determined, 

test specimens are molded at the optimum moisture content and 95% of the maximum dry 
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density. CBR test specimens are moded, cured, and tested in accordance with AASHTO T 193, 

“The California Bearing Ratio”, except that only two specimens are molded and tested. The 

actual density of the two specimens should bracket 95% maximum dry density.  A linear 

interpolation is used to determine and report the CBR value at 95% density. 

5. Triaxial testing 

In addition to testing specimens for strength using CBR, static triaxial testing may also be 

used to determine the specimen properties for SSV.  Static triaxial testing was the basis for the 

original calibration conducted to implement the AASHO design methods in the 1960’s. 

However, because CBR is easier to determine, this method is predominantly used at present.  For 

further information on triaxial methodologies for SSV, the Geotechnical Materials Engineer at 

the SCDOT Office of Materials and Research should be contacted. 

6. Analysis to establish SSV 

The SSV for an individual sample is determined from Figure A-1, which has been 

prepared to show the relationship between CBR value and SSV. A comparison of CBR and 

triaxial tests on a large number of samples was used as the basis of this relationship. Curves 

were developed for the Piedmont and Coastal Plain regions of the state. 

A tabulation of AASHTO classification of all soil samples from the project is made by 

listing the samples in order of their occurrence along the centerline. Samples that have actual 

soil support values derived from CBR or triaxial testing are also listed.  Historical data for 

similar soils nearby, where available, is consulted to assign other samples an individual SSV. 

Lacking historical data, additional CBR or triaxial tests may be required. 

A chart is then prepared showing SSV versus the percentage of soils having a SSV equal 

to or greater than the SSV. The SSV recommended for pavement design purposes is that value 

which 70% to 90% of the soils on the project equal or exceed. It is not economically feasible to 

design a pavement structure based on the poorest quality soils encountered on a project.  Soils 

with SSVs somewhat less than the design SSV are usually removed and replaced with better 

quality materials during construction. 
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California Bearing Ratio (CBR) vs. Soil Support Value
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Figure A-1, CBR versus Soil Support Value 
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The exact SSV assigned to a given project is also a function of the engineer’s assessment 

of the potential for variation within a project. Typically, it is not feasible to have multiple SSV’s 

or multiple pavement designs within a single project. As a result, the engineer must also 

consider the potential sources for variation in subgrade support within that project.  For instance, 

a large project with substantial fill, such as might be encountered in the flat, coastal regions, 

might derive much of its subgrade material from multiple borrow sources.  While it is generally 

assumed that the soil samples obtained along the centerline of the project would be 

representative of sources of borrow, this is not actually known at the time of SSV assignment. 

Additionally, mixing of borrow sources may result in unpredictable soil properties on the 

roadway. Accordingly, the engineer would typically choose a lower SSV to account for this 

potential variation. 

On the other hand, a smaller project with little or no borrow being mostly constructed at-

grade has a lower potential for variability.  Consequently, the engineer may choose to assign a 

higher SSV on the basis of similar test results solely on the basis of an estimation of variability.  

No “plug-and-chug” rule applies for selection of SSV for an entire project.  An engineer 

experienced in the assignment of SSV, fully aware of the historical and empirical aspects of this 

value, and informed of the nature of the particular project should make this final selection. 
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PAVEMENT DESIGN EXAMPLE
 



 

 

 
 

 
 

 
 

   
 

   
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 
 

January 3, 2003 

MEMORANDUM 

To: Mr. Derek J. Piper, Program Manager, CRM East 

From: Dr. Andrew Johnson, State Pavement Design Engineer 

SUBJECT:  PAVEMENT DESIGN RECOMMENDATIONS, SC-6/60, FROM S-32-175 TO  
US-378, LEXINGTON COUNTY  
FILES 32.147B, 32.148B  

As requested, we have reviewed conditions at the subject site in order to provide pavement 
design recommendations. 

Project Overview 
The project consists of widening SC-6 from US-378 to SC-60 and widening SC-60 from SC-6 to 
S-175.  The intersection of SC-6 and SC-60 will be replaced with a grade-separated interchange.  
It is assumed that the areas away from the Lake Murray Dam will be widened mostly about the 
centerline and the pavement in the vicinity of the SC-6 and SC-60 intersection will be replaced 
as part of the intersection reconstruction. 

The traffic across the dam will be separated. Traffic heading from Irmo to Lexington will use 
the existing road on the crest of the dam, while traffic heading towards Irmo will use a new 
roadway constructed between the existing dam and the new dam.  Pedestrian and bicycle 
facilities will be added to the existing roadway at the crest of the dam. 

Soil Conditions 
Mr. Piper provided soil information to us. Based upon a review of this information and previous 
investigations in this area, an SSV of 1.3 is recommended for SC-60 and and an SSV of 1.6 is 
recommended for SC-6. 

Traffic Conditions 
From US-378 across the dam, the current ADT is estimated to be 16,400 with 10 percent of the 
traffic being trucks. This is estimated to increase to 26,800 ADT in 10 years and 36,000 ADT in 
20 years. For pavement design, this results in a 10-year ESAL estimate of 3,011,000 ESALs and 
a 20-year estimate of 6,977,340 ESALs. 

For SC-60 from the SC-6 intersection to S-32-175, the current ADT is estimated to be 10,800 
with 10 percent of the traffic being trucks. This is estimated to increase to 26,300 in 10 years 
and 35,300 in 20 years. This results in a 10-year ESAL estimate of 1,780,000 ESALs and a 20­
year estimate of 4,420,000 ESALs. 
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Existing Pavement Conditions 
The pavement throughout the project was originally concrete. Since original construction, 
probably in the early 1930’s, the concrete was overlaid and widened using asphalt and has been 
overlaid multiple times. The original PCC appears to be in good condition with the exception of 
several blow-ups resulting from inadequate joint cleaning prior to original overlay.  The 
pavement joints have reflected through the asphalt, but faulting is of low severity. Maintenance 
forces have previously attempted to seal cracks in the asphalt to extend the pavement life. 

The previous widening is in poor condition. Moderate subsidence of the widening was noted 
throughout both projects as well as numerous areas of moderate to high severity distress and 
spalling. The pavement across the dam had numerous blow-ups, but was otherwise in good 
condition. 

Pavement Design Recommendations 
Based on the information provided, a pavement SN of 4.96 is recommended for SC-60.  For SC­
6 from the dam to US-378, a pavement SN of 4.91 is recommended.  As is typical for all designs, 
these are based on ten-year traffic projections.  However, because of the limited access to the 
pavement across the dam in the future, a 20-year design is recommended for this area.  
Consequently, for the pavement across the dam, a pavement SN of 5.49 is recommended. The 
following pavement structures are recommended: 

SC-60 from S-175 to SC-6 
and SC-6 from dam to US-378: 200 psy AC Surface – T1C 

200 psy AC Binder – T1
          1000 psy Asphalt Aggregate Base – T1 

This pavement has a SN of 4.92 versus target values of 4.96 and 4.91. 

SC-6 across dam: 200 psy AC Surface – T1C 
200 psy AC Binder 
750 psy Asphalt Aggregate Base – T1
    8 inches Graded Aggregate Base 

This pavement has a SN of 5.55 versus a target value of 5.59. An additional 450 psy AAB – T1 
may be used in lieu of the GAB for tapers and other areas where GAB placement is not feasible. 

For repair of existing pavement, with the exception of the pavement across the dam, it is 
recommended that the previous widening be removed, any blow-ups be spot milled to restore a 
smooth surface, and the pavement be overlaid with 200 psy AC Surface – T1C and 200 psy AC 
Binder – T1. 

For the pavement across the dam, we recommend that the existing pavement be removed and 
replaced with the new pavement structure recommended above. 

B-2
 



 

 

 

 
 

 
 
 
 

 
 
 

 
 

 
 

  
  

 

Concrete Pavement 
In accordance with SCDOT’s recently approved pavement type selection policy, a life cycle cost 
analysis was performed for the pavement over the Lake Murray dam because the pavement is on 
new location and the required structural number is over 4.5. This analysis is attached. Concrete 
pavement was found to be 113% of the cost of asphalt and 98% of the cost of asphalt in long-
term cost. Because of the short length of the project and to maintain continuity, asphalt 
pavement is recommended; even though concrete is approximately the same cost in the long-
term. 

Please let us know if we may provide further information. 

Andrew M. Johnson 

AMJ/amj 
File RM:MLC 

cc:	 Mr. Al Barwick, Construction 
Mr. Jim Cagney, District 1 
Mr. Robert Pratt, Preconstruction 
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Road: SC-60 

County: Lexington 

Location: From: SC-6  To: S-32-175 

Street: 

File Number: 32.147B 

Traffic Data Year Years in 
Period 

Estimated ADT 

Begin Design Period 2001 10,800 

End Intermediate Design Period 2011 10 26,300 

End Ultimate Design Period 2021 20 35,300 

Structural Number Determination 

Design Period 5 10 15 20 10-20 

Terminal Serviceability 2.0 2.0 2.0 2.0 2.0 

Soil Support Value 1.3 

Structural Number 4.41 4.96 5.32 5.59 5.23 

Regional Factor 1.0 1.0 1.0 1.0 1.0 

Weighted Structural Number 4.41 4.96 5.32 5.59 5.23 

Remarks: 

 
 

 

 

Flexible Pavement Design
 
SCDOT Research and Materials Laboratory
 

Prepared by: Andrew Johnson  
Title: State Pavement Design Engineer  
Date: December 31, 2002  
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Flexible Pavement Design
 
SCDOT Research and Materials Laboratory
 

Road: SC-6 

County: Lexington 

Location: From: Lake Murray Dam To: US-378 

Street: 

File Number: 32.148B 

Traffic Data Year Years in 
Period 

Estimated ADT 

Begin Design Period 2001 16,400 

End Intermediate Design Period 2011 10 26,800 

End Ultimate Design Period 2021 20 36,000 

Structural Number Determination 

Design Period 5 10 15 20 10-20 

Terminal Serviceability 2.0 2.0 2.0 2.0 2.0 

Soil Support Value 1.6 

Structural Number 4.41 4.91 5.24 5.49 5.09 

Regional Factor 1.0 1.0 1.0 1.0 1.0 

Weighted Structural Number 4.41 4.91 5.24 5.49 5.09 

Remarks: 

Prepared by: Andrew Johnson 
Title: State Pavement Design Engineer 
Date: December 31, 2002 
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 Material  Rate 
 (psy) 

Thick. 
 (in) 

 New 
 a1 

 Dep 
 A1 

 SN 
 Year 
 1-10 

 SN 
 Year 
 11-20 

 AC Surface – T1C  200  1.91  0.44   0.84  

 AC Binder – T1  200  1.91  0.44   0.84  

       

       

 SUBTOTAL  1.68  
 

 Material  Rate 
 (psy) 

Thick. 
 (in) 

 New 
 a2 

 Dep 
 A2 

 SN 
 Year 
 1-10 

 SN 
 Year 
 11-20 

 Asphalt Aggr. Base – 
 T1 

 1000  9.52  0.34   3.24  

       

       

  3.24  
 

 Material  Rate 
 (psy) 

Thick. 
 (in) 

 New 
 a3 

 Dep 
 A3 

 SN 
 Year 
 1-10 

 SN 
 Year 
 11-20 

       

       

 SUBTOTAL  0.00  0.00 

 TOTAL SN  4.92  

 TARGET SN  *  
 

 Remarks: *Target is 4.91 for SC-6 and 4.96 for SC-60 
 

Conversion of Pavement Design to Thickness  
Project: SC-6/60, Lexington County  

 
1. Surface and Binder Courses  

2. Base Courses  

3. Subbase Courses  
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 Material  Rate 
 (psy) 

Thick. 
 (in) 

 New 
 a1 

 Dep 
 A1 

 SN 
 Year 
 1-10 

 SN 
 Year 
 11-20 

 AC Surface – T1C  200  1.91  0.44    0.84 

 AC Binder – T1  200  1.91  0.44    0.84 

       

       

 SUBTOTAL   1.68 
 

 Material  Rate 
 (psy) 

Thick. 
 (in) 

 New 
 a2 

 Dep 
 A2 

 SN 
 Year 
 1-10 

 SN 
 Year 
 11-20 

 Asphalt Aggr. Base – 
 T1 

 750  7.14  0.34    2.43 

 Graded Aggr. Base   8  0.18    1.44 

       

   3.87 
 

 Material  Rate 
 (psy) 

Thick. 
 (in) 

 New 
 a3 

 Dep 
 A3 

 SN 
 Year 
 1-10 

 SN 
 Year 
 11-20 

       

       

 SUBTOTAL  0.00  0.00 

 TOTAL SN   5.55 

 TARGET SN   5.49 
 
Remarks:  

 
 

Conversion of Pavement Design to Thickness 
Project: SC-6/60, Lexington County 

1. Surface and Binder Courses 

2. Base Courses  

3. Subbase Courses  
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APPENDIX C
 

AASHTO PAVEMENT DESIGN NOMOGRAPHS
 



 

 

 
 
 

 
 
 
 
 

 

Figure 1 - AASHTO Flexible Pavement Design Nomograph, pt = 2.0 
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Figure 2 - AASHTO Flexible Pavement Design Nomograph, pt = 2.5 
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